This Website is not fully compatible with Internet Explorer.
For a more complete and secure browsing experience please consider using Microsoft Edge, Firefox, or Chrome

Purdue University to establish Thermwood LSAM research laboratory

Purdue University to establish Thermwood LSAM research laboratory

Purdue University’s Composites Manufacturing Simulation Center (CMSC, West Lafayette, Ind., U.S.) and Thermwood Corp. (Dale, Ind., U.S.) have agreed to establish a large-scale additive manufacturing (LSAM) laboratory to perform industry-funded research into large-scale composite thermoplastic additive manufacturing (AM).

The new facility will be established at Purdue’s Indiana Manufacturing Institute, located in the Purdue Research Park in West Lafayette, Ind., and will be staffed and operated by Purdue CMSC personnel. The official name for the new facility is the “Thermwood LSAM Research Laboratory at Purdue University.”

The new laboratory will be equipped with an LSAM 105 (ten-five) Large-Scale Additive Printer and a corresponding five-axis LSAM Additive Trimmer, as well as a variety of support systems. Thermwood says this installation is capable of printing and trimming complex geometries up to 5 x 10 x 4 feet tall at print rates of up to 100 pounds per hour. Commercial maximum print temperature for LSAM printers is usually limited to 450ºC, however, this particular system has been modified to enable testing at even higher temperatures for experimentation with innovations in materials normally not used in AM.
Thermwood LSAM additive printer with 10 by 5 table.

“Not only will this effort improve the overall quality of large-scale additive printing, but it should also increase our knowledge and understanding of the basic process of fusing layers together into a homogeneous structure,” says Ken Susnjara, founder, chairman and CEO of Thermwood.

According to Dr. R. Byron Pipes, executive director of Purdue’s CMSC, the research organization where the LSAM system will be installed, “Extrusion deposition composite additive manufacturing is a major innovation that will contribute to the development of tailored products with unique performance and just-in-time availability.”

Purdue plans to partner with industry to provide services to enhance, encourage and expand the adoption of large-scale AM for diverse industrial applications. They also plan to work with polymer suppliers to refine formulations and determine the ideal processing parameters necessary to produce the high-quality large-scale-printed parts.

Collaborative efforts of this type bring together diverse organizations that each specialize in different aspects of this emerging technology and often produce results that none of the participants could possibly achieve on their own. Both Purdue and Thermwood are confident that this will be the outcome of their collaborative effort.


About Purdue CMSC

The Composites Manufacturing and Simulation Center (CMSC) of the College of Engineering and the Purdue Polytechnic is a 30,000-square-foot facility located in the Indiana Manufacturing Institute building. CMSC consists of faculty experts in composites manufacturing, a professional staff of doctoral degree engineers, a support staff and research students in doctoral, masters and bachelor’s degree programs of the Schools Aeronautics and Astronautics, Chemical Engineering and Materials Engineering, as well as, the Department of Aviation Technology in the Polytechnic.

A comprehensive set of laboratories is available at the IMI for the study of composites manufacturing processes, characterization of composite materials, and the validation of simulation software essential to development and verification of the digital twin concepts in composite manufacture and performance. Focus specialties include extrusion deposition AM, composites autoclave processing of continuous fiber systems, compression and injection molding of discontinuous fiber composites, prepreg impregnation, infusion molding, sheet forming, complex mold-forming and hybrid continuous/discontinuous fiber systems. Workflow simulations are being developed to provide for end-to-end digital twins of these manufacturing processes. Accordingly, manufacturing informed performance predictions are a direct outcome of these workflow analyses.

In October 2020, in collaboration with Dassault Systèmes, Purdue also established the 3DEXPERIENCE Education Center of Excellence in Advanced Composites.