

NAFEMS - FENET Workshop 13-14 June 2002, Zurich

Fatigue Life Improvement of an Innovative Suspension System

Nawal K Prinja BSc, MSc, PhD, FIMechE Technical Manager NNC Limited UK

Models for the Automotive Industry

Adding value through knowledge

© NNC Limited

- Introduction
- Methodology
- Model Geometry
- **Stress Analysis**
- **Fatigue Assessment**
- Recommendations
- Conclusions

"We are testing are 5th prototype. What magic can you do?"

Adding value through knowledge

FE Modelling

Introduction

Adding value through knowledge

History

New designs for suspension systems for lorries were being developed by conventional test and trial method

Scope of Work

To use Finite Element analysis to improve the fatigue life of the Suspension Assembly.

Objectives

Failure assessment of Mark V Suspension System.
Demonstrate capabilities of complex FE analysis techniques to support design development.

•Suggest design improvements.

•Streamline design development process.

Methodology

Adding value through knowledge

Convert CAD geometry to FE model

- mid-surfaces/volumes
- meshing
- boundary conditions/loading
- validation
- Stress Analysis
- Fatigue Analysis
- Assessment
 - Steel components
 - Welded joints

Main Components

Adding value through knowledge

Assembled in parts for easier manufacturing

Model Geometry - Parts

Model Geometry - From CAD to FE

Modelling Assumptions

Adding value through knowledge

- Orientation of Side Plate
- Angle @ start of test 20°

 Axle to Wrap Plate connection- No frictional contact

Model Geometry - Mesh Generation

Modelling of Welded Joints

Adding value through knowledge

Welds represented as Beam Elements

Mesh Generation - Full Model

- Linear Elastic
- Boundary Conditions
- 4 Loadcases
 - Roll Manoeuvre
 - Tramp Manoeuvre
 - Scrub Manoeuvre
 - 1.75g Bump Manoeuvre
- Material Properties

Stress Analysis - Boundary Conditions

Stress Analysis - Material Properties

Part	Young's Modulus	Poisson's Ratio
Arm	203GPa	0.3
Spring Platform	Ħ	11
Cover Plate	11	"
Damper	11	11
Side Plate	11	
Wrap Plate	11	"
Pivot	11	"
Welds	406GPa	11
Axle	203GPa	11

Loadcase 1: Roll Manoeuvre

Stress Analysis - Model Validation

Adding value through knowledge

Start Condition - Sum of Vertical Forces

Adding value through knowledge

Roll Manoeuvre - Displaced Shape

Adding value through knowledge

Rollover LH - Arm/Pivot - TRESCA Stress

Adding value through knowledge

Rollover LH - Spring Platform - TRESCA Stress

Adding value through knowledge

Rollover LH - Side Plate - TRESCA Stress

Loadcase 2: Tramp Manoeuvre

Adding value through knowledge

29

Tramp Manoeuvre - Displaced Shape

Adding value through knowledge

Tramp LH/RH Bump - Arm/Pivot - TRESCA Stress

Tramp LH/RH Bump - Spring Platform - TRESCA Stress

Adding value through knowledge

32

Tramp LH/RH Bump - Side Plate - TRESCA Stress

Loadcase 3: Scrub Manoeuvre

Adding value through knowledge

Scrub Manoeuvre - Displaced Shape

Adding value through knowledge

Scrub LH -ve - Spring Platform - TRESCA Stress

Adding value through knowledge

Scrub LH -ve - Side Plate - TRESCA Stress

Loadcase 4: 1.75g Bump Manoeuvre

Adding value through knowledge

39

1.75g Bump Manoeuvre - Displaced Shape

Adding value through knowledge

Adding value through knowledge

41

1.75g Bump - Spring Platform - TRESCA Stress

Adding value through knowledge

1.75g Bump - Side Plate - TRESCA Stress

Adding value through knowledge

Critical Locations of Peak Stresses

Assessment

Three failure mechanisms are relevant :-

- Crack initiation
 - Fatigue assessment using BS5400 rules
- Crack Propagation
 - Fracture mechanics using R6 procedure
- Cyclic plasticity causing incremental collapse
 - Shakedown criteria

Fatigue Assessment - Methodology

Adding value through knowledge

- Parent Material and Welds
 - BS5400 Part 10 & BS7608
 - Critical sample stress locations assessed
 - Alternating stress calculated using FORTRAN programme
 - Predicted number of cycles to failure calculated

Fatigue Assessment of Parent Material

Assessment - Stress History

Adding value through knowledge

Example of Stress Range Selection

Multi-axial non-proportional stress-strain state

Fatigue Assessment - Results

Adding value through knowledge

49

Arm - Element 480

Manoeuvre	Detail Class	Alternating Stress (MPa)	Stress Range (MPa)	Predicted Cycles to Failure (N)	Usage
Roll	W (G)	290	580	1.9e3 (2.9e3)	16.8 (11.0)
Tramp	W (G)	339	678	1.2e3 (1.8e3)	26.7 (17.5)
Scrub	W (G)	14	28	1.6e7 (2.6e7)	0.0 (0.0)
1.75g	W (G)	122	244	2.5e4 (3.9e4)	1.3 (0.8)
					Σ 44.8 (29.3)
					40

Fatigue Assessment - Results

Adding value through knowledge

Arm - Fatigue Usage

Fatigue Assessment - Results

Adding value through knowledge

Arm - Fatigue Usage

52

Spring Platform - Fatigue Usage

Fatigue Assessment of Welds

Plug Weld Adjacent Element 480 (Arm side of weld only)

J. J					∑ 3.6
	3		HHK I	-	
1.75g	W	67	133	1.6e5	0.2
Scrub	W	6	12	2.1e8	0.0
Tramp	W	132	263	2.0e4	1.6
Roll	W	137	273	1.8e4	1.8
Manoeuvre	Detail Class	Alternating Stress (MPa)	Stress Range (MPa)	Predicted Cycles to Failure (N)	Usage

Why Fatigue Failure?

Adding value through knowledge

Load Path

Adding value through knowledge

Large stresses from side plate to arm

Adding value through knowledge

Action of plug welds on arm Viewport: 1 Model: Model-1 Module: Visualization s. s22 Multiple section points (Ave. Crit.: 75%) +3,963e+02 +3.234e+02 +3.234e+02 +2.506e+02 +1.777e+02 +1.048e+02 -+3.197e+01 --4.089e+01 --4.0896+01 --1.1386+02 --1.866e+02 --2.595e+02 --3.324e+02 --4.052e+02 --4.781e+02 High vertical tensile stress **High vertical** compressive stress ODB: mkv_m1r11_tramp_r2.odb ABA0US/Standard 5.8-1 Tue Mar 28 16:22:35 BST 2000 Step: Tramp: LH Bump (05) Increment Primary Var: 5, 522 1: Step Time = 1.000

Adding value through knowledge

- Stress flow dictated by
 - loading mechanism
 - Shape and location of the plug welds

Max. Principal Stress (tension)

Min. Principal Stress (comp.)

Adding value through knowledge

Fracture Mechanics

Adding value through knowledge

Fracture Mechanics

Adding value through knowledge

Crack Propagation in Arm for Element 480 (top surface) Vertical (s22) stress assessment

Manoeuvre	Critical Crack Size (mm)	Crack Growth over 32000 cycles (mm)	Initial Crack Size to Caus Failure (mm
Roll	3.5	1.9	1.7
Tramp	3.6	1.8	1.8
Scrub	4.4	0.1	4.3
1.75g	3.9	0.6	3.3

e

Conclusions

Conclusions

Adding value through knowledge

Geometric data

- Transfer from CAD to FE works
- Provision of shell geometry as mid-surfaces and solid as volume
- **Stress Analysis**
 - Full test simulation possible
 - Peak stresses identified
 - Loading mechanism and stress flow understood

cont'd.

Conclusions

Adding value through knowledge

Assessment

- Vertical loading dominant
- Fatigue failure in parent metal and in welds
- Allowable stress range ~226MPa for 32,000 cycles for detail class W
- Local stress concentrations cause failures
- Roll and Tramp manoeuvres cause most damage
- Accelerated fatigue testing by using high loads causes plasticity and incremental collapse
- Functional failure occurs when theoretical fatigue usage factor is 15 or more

Recommendations

Recommendations

Adding value through knowledge

Simulation

- Include bracket at the pivoted end for more realistic test simulation
- **Conduct non-linear analysis of the**
 - air-spring
 - bush

Design Improvements

Adding value through knowledge

Design

- Redesign the plug weld connection to avoid peak stresses in the lower regions
- Investigate spring platform local strengthening
- Remove the Cover Plate

New Design without Side Plate

Adding value through knowledge

Stress Analysis - Interpretation

Adding value through knowledge

Displacement Direction

Adding value through knowledge

Tramp Manoeuvre - Stress Contours in Wrap Plate (Front)

Stress Analysis - Interpretation

Adding value through knowledge

S11 Stress in Axle Front for all Loadcase
Design Improvement

Adding value through knowledge

Improve the cutout radii

Change the angular orientation of the Side Plate

Adding value through knowledge

Original design

Fatigue life < 20,000 cycles

Improved design

Fatigue life > 35,000 cycles

