

NVH SIMULATION IN POWERTRAIN ELECTRIFICATION

AVL Powertrain Engineering, Inc.

Public

INTRODUCTION AVL POWERTRAIN ENGINEERING

INTRODUCTION AVL EXCITE – PRODUCT FAMILY

EXCITE Designer

Analytical methods for fast dimensioning of cranktrains and drivelines in the concept phase

EXCITE Power Unit

Dynamics, durability and NVH of engines, transmissions and powertrains

EXCITE Acoustics

Efficient sound radiation calculation

EXCITE Timing Drive

Reliable dynamic analysis of all kinds of valve trains and timing drives

EXCITE Piston&Rings

Efficient tool for piston ring design analysis and optimization

INTRODUCTION AVL'S ELECTRIFICATION COMPETENCIES

INTRODUCTION LAYOUT OF ELECTRIFIED POWERTRAIN

INTRODUCTION NVH CHALLENGES - ELECTRIFIED POWERTRAIN

- Increased system complexity
 - more components → more potential noise sources
- Completely new noise sources
 - E-machine
 - Inverter
 - Relay noise
- No masking by IC-engine (in full electric mode)
- More complex control strategy leads to more NVH critical operating conditions
- Non-stationary operating conditions
 - Start/Stop
 - ICE Engagement
 - High influence of control strategy (H)EV

TOTAL NOISE BY MECHANICAL AND ELECTROMAGNETIC EXCITATION

CURRENT WORK FLOW NVH OF ELECTRIFIED POWERTRAIN

WORK FLOW IN DEVELOPMENT NVH OF ELECTRIFIED POWERTRAIN

Public

Structure Borne Noise

- Electro-magnetic field excitation on housing is considered within the MBD analysis
- Radial and circumferential forces are extracted during iteration process from the e-machine coupling model (EMC1-joint) and applied onto the condensed FEM housing
- No separate FEM forced response calculation required

Structure borne noise is direct result from MBD analysis (data recovery, modal data recovery)

CASE STUDY E-MACHINE ELECTROMAGNETIC EVALUATION

Input current [A]

Input current [A]

Input current [A]

Torque [Nm] Input current [A Copper loss [W] 1.1.1.1.1.1.1.1 1.1.1.1.1.1.1.1.1.1.1.1 Revolution speed [rpm] Revolution speed [rpm] Input current [A] Input power [kW] Iron loss [W] Revolution speed [rpm] Revolution speed [rpm] Input current [A] Power in shaft [kW] Loss per magnet [W]

Revolution speed [rpm]

Revolution speed [rpm]

Operation map

Effect on NVH: 24^{th} , 48^{th} , and 96^{th} torque order increase

CASE STUDY MECHANICAL NOISE: GEAR WHINE

Surface normal velocity levels

CASE STUDY EXCITE POWERUNIT MODEL FOR NVH

- Mechanical Torque provided by classic Multi-body dynamics simulation
- Electromagnetic loads applied as external load to structure

CASE STUDY TOTAL NOISE RADIATION

CASE STUDY SURFACE VELOCITY

Electromagnetic excitation is dominant at this speed

CASE STUDY: NVH SIMULATION OF A PARALLEL HYBRID

CASE STUDY: NVH SIMULATION OF A PARALLEL HYBRID

