

CASE STUDIES | session 2 ENGINEERING THE ELECTRIC VEHICLE REVOLUTION EXTRAPOLATION IS NOT PREDICTION

Engineering Analysis & Simulation in the Automotive Industry *Electrification & Advanced Lightweighting Techniques* April 27, 2017 – Troy

Apurva Gokhale, Esteco North America David Moseley, Lucid Motors Alberto Bassanese, Lucid Motors Barnaby Lewis, Lucid Motors

>> Hybrid Electric and Pure Electric Vehicles

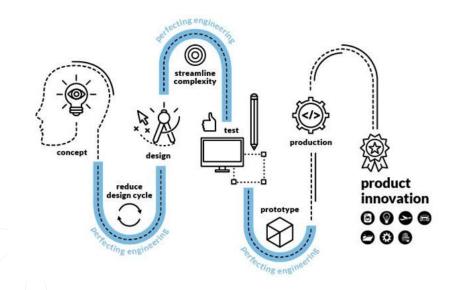
Hybrid Electric Engine Optimization Using modeFRONTIER

Top industry players design tasks for HEV/EV systems in ESTECO technology to quickly identify the right engineering strategies and overcome highly constrained design problems.

Trends and challenges in HEV and EV industry

Hybrid electric (HEV) and pure electric (EV) vehicles are quickly becoming coveted items with **market growth forecasted at a compound annual rate of 6%;** the EV segment alone is estimated to grow at **a rate of 39% up to 2020¹**.

DESIGN CHALLENGES


- ✓ Traction motors require recalibration for HEV/EV applications
- Designers lose time reviewing hundreds of designs
- Designs must consider structural and thermal limitations along with electromagnetic design contraints in motor magnetics
- Advanced designs require significant computational resources

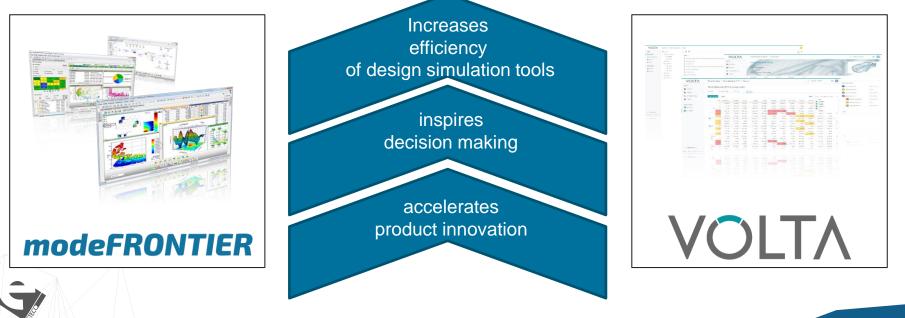
1] Pike Research, 2012: "Electric Vehicle Market Forecasts"

>> About ESTECO

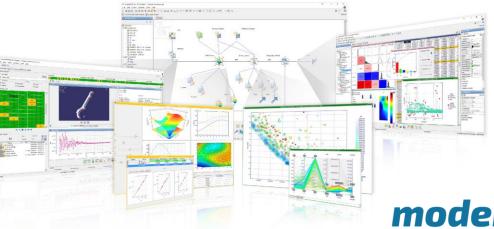
ESTECO is an independent technology provider delivering first-class software solutions aimed at perfecting the simulation-driven design process. With more than 15 years' experience, we support engineers and companies in designing better, more efficient products.

We specialize in customer-focused solutions for numerical optimization, CAE integration, process automation and simulation data management.

ESTECO Technologies – A Perfect Match


modeFRONTIER execution engine B E E P M N web editor

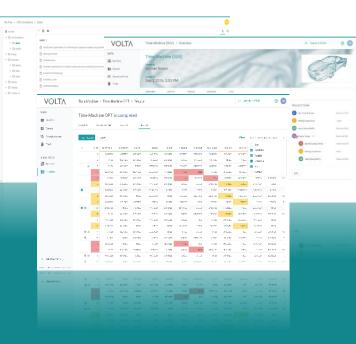
>> ESTECO Technology


Our smart engineering suite brings enterprise-wide solutions for design optimization, simulation data management and process integration and automation.

We help companies excel across theirs innovation journey and accomplish

the shift to agile product development.

ESTECO Technology > modeFRONTIER



modeFRONTIER

Streamlines the design process with powerful workflows, innovative algorithms and advanced post-processing tools. is an integration platform for multiobjective and multidisciplinary optimization. It provides a seamless coupling with third party engineering tools, enables the automation of the design simulation process and facilitates analytic decision making.

>> Introducing the new SPDM paradigm

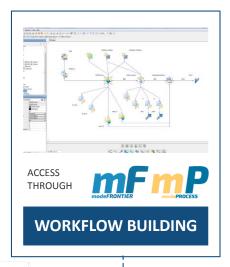
VOLTA is a web-based, collaborative environment that orchestrates simulation data and multidisciplinary business processes enabling conscious decision-making and innovative product development

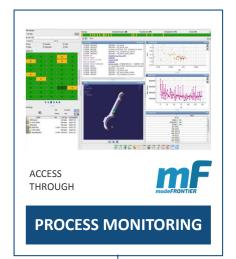
>> optimizing the HEV/EV design

modeFRONTIER manages the strong non-linearity of HEV/EV design processes and identifies the best components and mechatronics integration by:

helping to develop optimal control strategies, power management, torque/speed coupling & vehicle dynamics

Enhancing multidisciplinary behavior at system level (mechanical, electrical, thermal & magnetics)



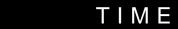

identifying the optimal configuration and size of HEV/EV powertrains & components

modeFRONTIER offers a **modular environment** giving access to different sets of functionalities

ENGINEERING THE ELECTRIC MEHICLE REVOLUTION - EXTRAPOLATION IS NOT PREDICTION


ESTECO Technology Day on Optimization

David Moseley rector, Powertrain


Lucid

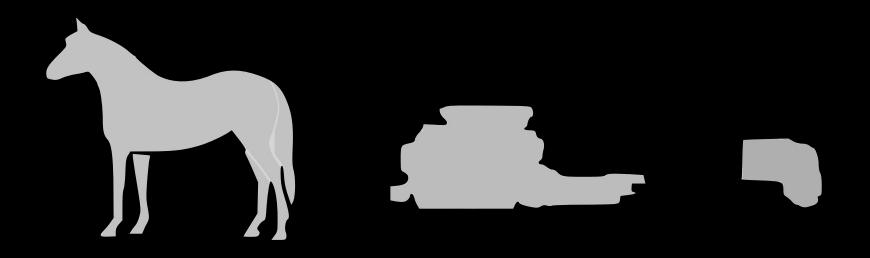
- California-based electric-vehicle startup company
- Founded 2007 as Atieva by ex-Tesla / Oracle execs
- Initially developing battery pack technology
- Now developing our first vehicle the Lucid Air
- In 2016, Atieva was appointed by FIA as the sole battery-pack supplier for Formula E

ENERGY

SPACE

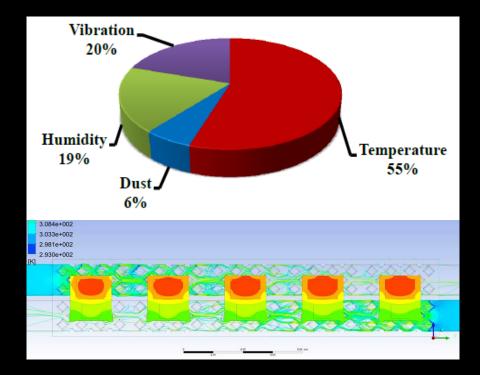
PERFORMANCE DRIVING URBAN COMMUTING

SUBLIME LUXURY



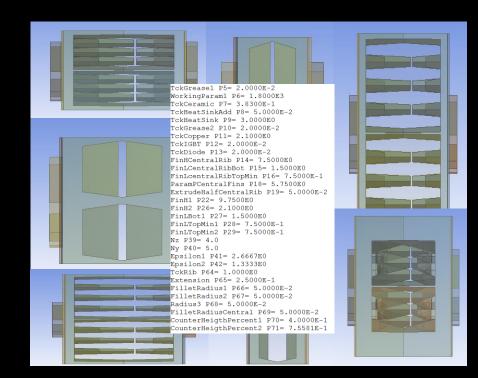
Engineering for Space

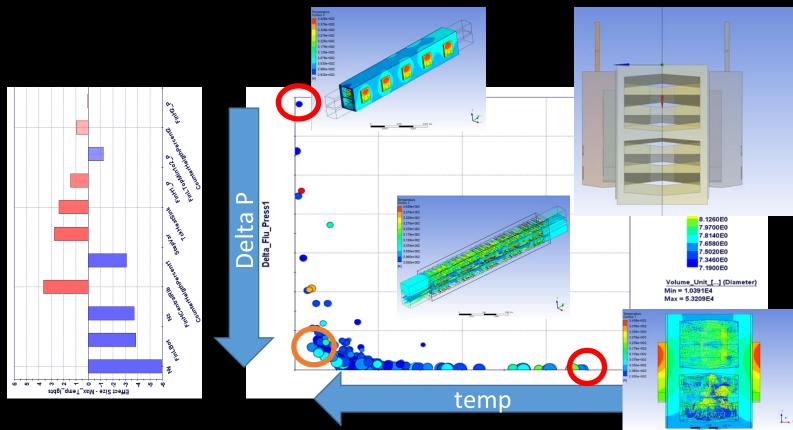
Engineering for Performance



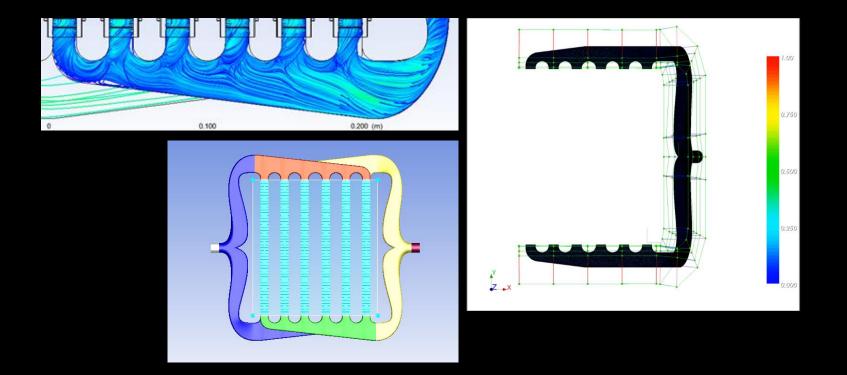
1 H P 300 H P 600 H P

Inverter Design Challenges

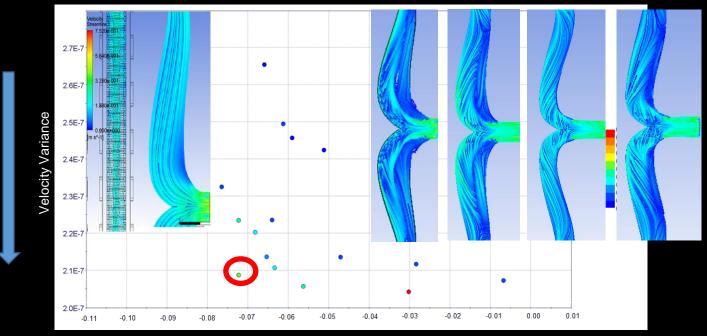

- Electronic device failure rates are strongly linked to temperature
 Doubling with every 10°C rise
- Efficiency driven by
 - Low chip-to-coolant thermal conductivity
 - Temperature equality
 - Low pumping pressure
 - (Physical size)



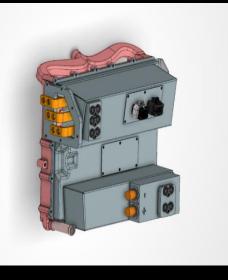
Design Strategy


- Conceptual design of cooling channel
- A fully-parametric model ...
- ... enabling a near-arbitrary CFD channel model to be built

Optimization – Channel Design



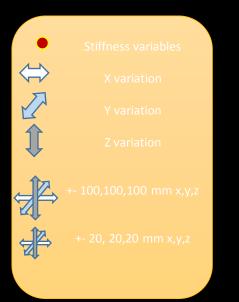
Optimization – Manifold Design

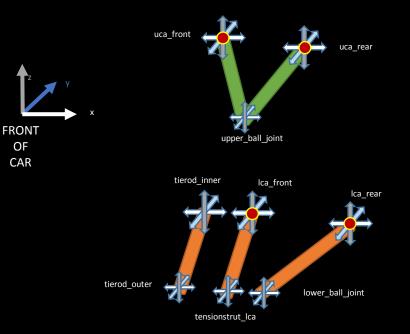

The Inverter Design Challenge

Pressure Variation from Baseline [%]

Optimization – Consequences

	Lucid	Lucid
	(Gen 3)	(Gen 4)
Current	1500 A	1200 A
Power	450 kW	350 kW
Power Density	30.0 kW / litre	~39 kW / litre
	29.3 kW / kg	~40 kW / kg


Pervasive Thermal Analysis Optimisation


Motor Cooling

Wall Heat Transfer Coefficient Contour 3 Vall Heat Transfer Coefficient 6.369e+003 5.982e+003 5.951e+003 5.626e+003 5.533e+003 5.270e+003 5.115e+003 4 914e+003 4.697e+003 4.558e+003 4.279e+003 4.203e+003 3.861e+003 3 443e+00 Wall Heat Transfer Coefficient 3.025e+00 5.555e+003 2.607e# 5.345e+003 2 189 5.135e+003 W m^-2 4.925e+003 4.715e+003 4.505e+003 4 295e+003 4.085e+003 3.875e+00 3.665e+0 0.100 (m) 3.455e 0.100 (m) [W m^-2 K*

Onboard Charger Cooling

Suspension Optimisation (ADAMS)

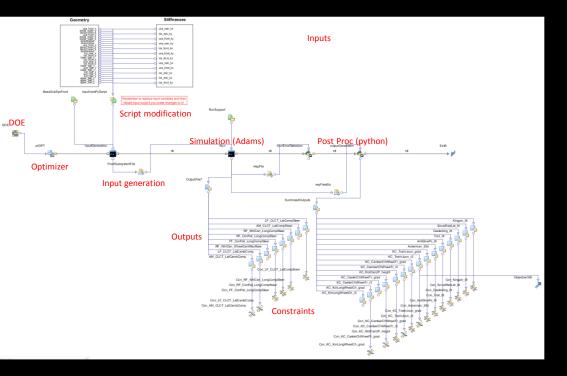
modeFRONTIER Links

Scale

Shape1

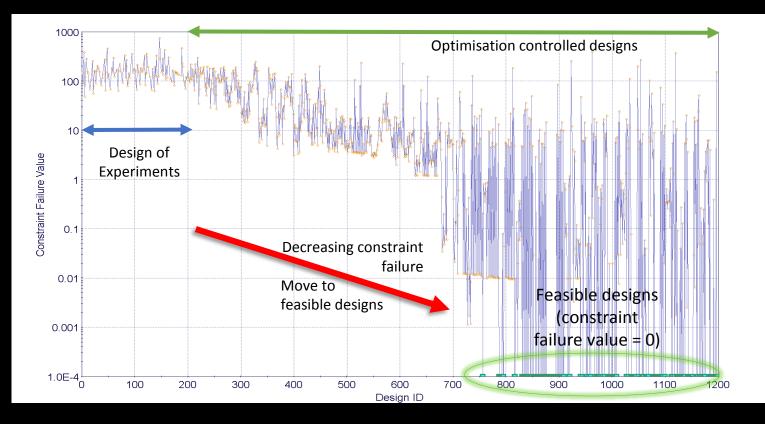
Shape

• Define search space


Set constraints

😵 Design Constraint							
	Enabled	Name	User Expression	Туре	Lîmit		
0	V	Con_KC_KinLongWheelCh_grad	KC_KinLongWheelCh_grad	Greater Than	0.0		
1	V	Con_KC_CasterChWheelTr_grad	KC_CasterChWheelTr_grad	Less Than	0.02		

• Click "Run"



Adams modeFRONTIER Design Exploration

Extrapolation is Not Prediction

"IN 2050, URBAN MOBILITY WILL USE 17.3% OF THE PLANET'S BIOCAPACITIES, 5X MORE THAN IN 1990"

A D Little - Future of Urban Mobility

Three Millennial "Wants"

>> Preparing For The Future

Optimization results

Alternative Inverter optimal designs identified: efficiency enhanced, failure rates minimized

modeFRONTIER optimization Design process automation, quick optimization setup and execution and decision-making support help overcome such highly constrained design problems

esteco.com

Towards a green powertrain technology

Urbanisation and its sustainability Demands of a new generation, with new values and expectations

THANK YOU

TH

Thank you for your attention!

<u>echnical Support: support@esteco.com</u>

Sales: na.sales@esteco.com

EXPLORE DESIGN PERFECTION

