

USE OF COMPOSITE BRACKETS AND REINFORCEMENTS IN A VEHICLE STRUCTURE MODEL FOR A LIGHTWEIGHT DESIGN

Rahul Makwana & Pratik Deshpande Detroit Engineered Products Inc. Troy, MI USA

Table of Contents

- INTRODUCTION
- OBJECTIVE
- METHODOLOGY
- RESULTS
- DISCUSSION
- CONCLUSION
- LIMITATIONS/FUTURE WORK

INTRODUCTION

Motor Vehicles

- More Elegant Design and Development
 - Customer Centric
 - » Optimized in Shape/Size
 - » Quality/Quantity/Affordable
- <u>Stringent and Complex Safety Targets</u>
 - New Regulations: NHTSA, IIHS
 - » Excellent Structure
 - » Good Occupant Response
- <u>Fuel Efficient</u>

 Great Mileage
 Mass Reduction
 - » Low Cost

Introduction Cont'd – Current Trend

OPPORTUNITIES FOR WEIGHT REDUCTION

- New Designs and Product Developments
- New Material Developments
- CAE Processing Techniques
- Environment protection
- Increased Fuel Economy
 PROCESSING/MANUFACTURING

DESIGN

MATERIAL

ENGINEERING

Introduction Cont'd – Efficiency & Effectiveness

- Safety Benefits of lightweight Plastics and Composite Intensive Vehicles (PCIVs) (Park et al 2012)
- NHTSA directed various research centers to develop a future road map for PCIVs
- In order to facilitate their use by 2020
- (1) material database, (2) crashworthiness test method development, and (3) crash modeling (Barnes, 2010)

MATERIAL SIGNIFICANCE

- Energy Absorption/Dissipation by Vehicle Structures
- Under high velocity impact loadings
- Their ability to absorb/dissipate energy differs from one component to another
- Depending upon the material used, geometry and mode of deformation
- Selection of suitable material in designing of a vehicle structure
- Maximum amount of energy should dissipate while the material surrounding the passenger compartment is deformed to protect the people inside

(Mamalis et al 2003)

COMPOSITES

- Combination of two or more materials
- Higher stiffness/weight and strength/weight ratio
- Widely used in many structural applications
- More and more metal parts are being replaced by composites
- Usage of Plastic/Composites grown up by 15% since 2010 (National Research Council Committee on Fuel Economy of Light-Duty Vehicles, Phase 2 Exploring Options for Lighter-Weight Vehicles February 13, 2012 – Ann Arbor, MI)

OBJECTIVE

- To evaluate impact response of composite materials
- Comparison between conventional steel structures against composites
- Subjected to a High speed impact
- With the help of Computer Aided Engineering (CAE) techniques
- Investigate vehicle weight reduction opportunities

METHODOLOGY

- A Finite Element Analysis (FEA) study
- FE Model of a Sedan
- Identify components for weight reduction opportunities
- Replacement of steel materials with set of composite materials
- Compare vehicle crash performance
 between the steel and composite
- Frontal Crash Mode (NCAP) 35MPH

nafems.org/americas

METHODOLOGY – Cont'd

- Selection of Parts
- Brackets/Reinforcement/ Attachments
- Spanning from front bumper frame to the rear bumper
- Over 200 components out of ~795 components
- Varying mass/gauge from 8 g to 3 kg
 0.5 mm to 7 mm
- Varying steel material property data

nafems.org/americas

METHODOLOGY – Cont'd

Bumper frame reinforcements Hood reinforcements Radiator mount brackets Rail reinforcements Engine mount brackets Pillar Reinforcements CCB reinforcements Knee bolster/Glove box reinforcements Seat mounting brackets Door outer/inner reinforcements Roof reinforcements C- Pillar Reinforcements Rear Seat frame Trunk reinforcements Rear bumper reinforcements

nafems.org/americas

Composite Materials Used for the FE analysis

• **CFRTP (Carbon Fiber Reinforced Thermoplastics):** Similar properties to thermosetting resins but with higher ductile fracture properties

Reference: Goto, T., Matsuo, T., Uzawa, K., Ohsawa, I., & Takahashi, J. (2011). Study on optimal automotive structure made by CFRTP. In Proceedings of the 18th International Conference of Composite Materials, TH32, 1-4.

- **CFS003:** 2x2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin Reference: Jindong, Ji. Lightweight Design of Vehicle Side Door. Diss. Politecnico di Torino, 2015.
- E-Glass/Epoxy: Manufactured in a fabric way but lower strength/modulus with higher material density

Reference: Jindong, Ji. Lightweight Design of Vehicle Side Door. Diss. Politecnico di Torino, 2015.

 CTBC (Carbon Thermoset Braided Composite): It is well-suited for components that are of simple geometry and need to provide off-axis as well as unidirectional strength
 Reference: Park, C-K., Kan, C-D., Hollowell, W., & Hill, S.I. (2012, December). Investigation of opportunities for lightweight vehicles using advanced plastics and composites. (Report No. DOT HS 811 692). Washington, DC: National Highway Traffic Safety Administration

Material Parameters for the Composites

	Density (g/cm^ 3)	Ea (GPa)	Eb (GPa)	PR	GAB (GPa)	GAC (GPa)	GBC (GPa)	XT (MPa)	XC (MPa)	YT (MPa)	YC (MPa)
CFS003	1.45	53.6	55.2	0.042	2.85	2.85	1.42	618	642	652	556
E- Glass/E poxy	1.85	29.7	29.7	0.17	5.3	5.3	5.3	369	549	369	549
CTBC	1.50	80	80	0.35	30	30	30	800	300	1000	300
CFRTP	1.36	34	N/A	0.21	ELASTIC-PLASTIC MATERIAL						

RHO- density of composite material; 500 Stress-Strain for CFRTP material EA- Young's modulus of longitudinal direction, a direction; 400 EB— Young's modulus of transverse direction, b direction; stress(MPa) 300 PR— Main Poisson's ratio, related to a direction and b direction; GAB— Shear modulus of a direction and b direction: 200 GAC— Shear modulus of a direction and c direction, direction c is perpendicular to the plane of ab; 100 GBC- Shear modulus of b direction and c direction: 0 XT— Longitudinal tensile strength; **Reference: LSDYNA KEYWORD USERS MANUAL** http://lstc.com/pdf/ls-yna 971 manual k.pdf 20 30 10 40 XC- Longitudinal compressive strength; Goto, T., Matsuo, T., Uzawa, K., Ohsawa, I., & Takahashi, J. (2011). Study on optimal strain(%) YT- Transverse tensile strength; automotive structure made by CFRTP. In Proceedings of the 18th International Conference of Composite Materials, TH32, 1-4. 14 YC— Transverse compressive strength;

LSDYNA Material Model for the Composites

MAT54/55 -MAT_ENHANCED_COMPOSITE_DAMAGE

- A composite failure material model available in the material databases of a non-linear large deformation FE solver LS-DYNA (LSTC, Livermore, CA).
- This material model allows assignment of different material properties to the fibers in three orthogonal directions (a, b, and c).
- According to literature, two directions in fabric reinforced aramid laminates of shell had similar material behaviors.
- Therefore, a transversely isotropic material would be sufficient to define the material behavior.
- where one set of moduli and strengths were for the radial directions (a and b) while other ones for the tangential directions (c).

Reference: LSDYNA KEYWORD USERS MANUAL http://lstc.com/pdf/ls-yna_971_manual_k.pdf

METHODOLGY - Crash Load Case and Vehicle Structure Responses

- FRONTAL (NCAP) IMPACT
 - 35 MPH
 - Rigid Wall

- FRONTAL (NCAP) IMPACT
 Vehicle Acceleration at L
 - Rocker Inner
 - Vehicle Crush
 Energy Absorption

nafems.org/americas

April 27th, 2017 | Troy

RESULTS – Rocker Acceleration Comparison

Ontil 20 ms the acceleration patterns are similar across all the material configuration

- Setween 21 to 50 ms a variable pattern is observed between the material configurations which shows the vehicle structure engagement with the wall
- *After 50 ms and before the re-bounding phase the peak acceleration magnitudes show a reasonable comparison between CFRTP,CTBC. However comparing the baseline with the CFS003 and E-Glass a considerable amount of difference is observed (~10G)

nafems.org/americas

April 27th, 2017 | Troy

2629252

Global

X = 712.273

E-GLASS_EPOXY Time = 100.000801

Time = 100.000801

2637738

CFRP

CFS003 Time = 100.000801

nafems.org/americas

2629252

1-

Engineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniques

RESULTS – Wall Forces/Internal Energy

- Baseline has five peaks with a certain force range
- All the four composite materials show reduction in the peak forces than the baseline – Vehicle mass reduced
- No excessive peak forces are observed before the re-bounding phase
- □Not variable forces are observed until 50 ms

□Energy absorbed by E-GLASS is minimum □CTBC/CFRTP performance is quite similar

DISCUSSION

nafems.org/americas

Engineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniques

CONCLUSION

- A preliminary FE crash analysis
- Highlighting use of composite materials
- Based on different composite material grade
- Interesting vehicle responses and structure energy attenuation characteristics were found

LIMITATIONS and FUTURE WORK

- Only material substitution study
- Attachment (bonding/joining) methodology between composite/steel structures is not studied
- Validation Studies
- Further Scope identification and Optimization studies -
- Other Crash modes
- NVH
- Manufacturing/Packaging
- Robust vehicle consisting of Composite materials

Additional Study

- E-Glass Case
- Up gage the Front Rail Reinforcements

- Changed the gage
 to 5 mm
- Compare responses between original Eglass and the upgaged one

BIW - rail middle reinfoce - L	054/055 ENHANCED_COMPOSITE_DAMAGE	2.55
BIW - shock housing - L - I	024 PIECEWISE_LINEAR_PLASTICITY	2.48
BIW - upper rail - L	024 PIECEWISE_LINEAR_PLASTICITY	1.5
BIW - rail - L - I	024 PIECEWISE_LINEAR_PLASTICITY	1.9
BIW - rail reinfor 1 - L - I	054/055 ENHANCED_COMPOSITE_DAMAGE	2.07
BIW - rail middle reinfor 2 - L	054/055 ENHANCED_COMPOSITE_DAMAGE	2.4
BIW - rail reinforcement 2 - L-I	054/055 ENHANCED_COMPOSITE_DAMAGE	3.4
BIW - rail middle bracket 1 - L	054/055 ENHANCED_COMPOSITE_DAMAGE	
BIW - upper wheel well - R - I	024 PIECEWISE_LINEAR_PLASTICITY	1.28
BIW - rail plate 1 - R	024 PIECEWISE_LINEAR_PLASTICITY	2.51
BIW - rail plate 2 - R	024 PIECEWISE_LINEAR_PLASTICITY	1.52
BIW - rail - R - O	024 PIECEWISE_LINEAR_PLASTICITY	1.91
BIW - rail middle reinfoce - R	054/055 ENHANCED_COMPOSITE_DAMAGE	2.55
BIW - upper rail - R	024 PIECEWISE_LINEAR_PLASTICITY	1.5
BIW - rail - R - I	024 PIECEWISE_LINEAR_PLASTICITY	1.9
BIW - rail reinfor 1 - R - I	054/055 ENHANCED_COMPOSITE_DAMAGE	2.07
BIW - rail middle reinfor R - L	054/055 ENHANCED_COMPOSITE_DAMAGE	2.4
BIW - rail reinforcement 2 - R-I	054/055 ENHANCED_COMPOSITE_DAMAGE	3,4
BIW - rail middle bracket 1 - R	054/055 ENHANCED COMPOSITE DAMAGE	

April 27th, 2017 | Troy

Additional Study

nafems.org/americas

Engineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniques

REFERENCES

- Park, C-K., Kan, C-D., Hollowell, W., & Hill, S.I. (2012, December). Investigation of opportunities for lightweight vehicles using advanced plastics and composites. (Report No. DOT HS 811 692). Washington, DC: National Highway Traffic Safety Administration
- (National Research Council Committee on Fuel Economy of Light-Duty Vehicles, Phase 2 Exploring Options for Lighter-Weight Vehicles February 13, 2012 – Ann Arbor, MI)
- Barnes, G., Coles, I., Roberts, R., Adams, S. O., & Garner, D. M. (2010). Crash safety assurance strategies for future plastic and composite intensive vehicles (PCIVs). (Report No. DOTVNTSC- NHTSA-10-01). Cambridge, MA: Volpe National Transportation Systems Center.
- Mamalis A.G., Manolakos D.E., Ioannidis M.B., Kostazos P.K. et al., "Static and dynamic axial collapse of fibreglass composite thin-walled tubes: finite element modelling of the crush zone", International Journal of Crashworthiness, 8(3):247-254, 2003.
- LSDYNA (LIVERMORE SOFTWARE, CA)
- LS-PREPOST

Thank You!

nafems.org/americas

Engineering Analysis & Simulation in the Automotive Industry: Electrification & Advanced Lightweighting Techniques

27

April 27th, 2017 | Troy