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MotivationMotivation

Technical
 

significance

In the
 

pressure
 

equipment
 sector

 
high temperature

 
is

 part
 

of the
 

specific
 

loading
 situation

Understanding
 

of creep
 mechanisms

 
is

 
the

 
key

 
to 

prevent
 

failures
 

and to 
optimize

 
the

 
design

 
and life 

time assessment
 

of 
pressurized

 
components



Part I Part I ––
 

CreepCreep
 

phenomenaphenomena

Standard material behaviour
 

under 
load at low temperatures
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Time independent deformation

Plastic
 

deformation: load
 

exceeds
 

the
 

yield
 

strength
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 material -

 
balance

 
between

 
load

 
and deformation

Yield strength

Tensile strength
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CreepCreep
 

phenomenaphenomena

Standard material behaviour
 

under load
Lo
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Deformation (strain) Temperature

Creep
 

deformation
 

takes
 

place
 

even
 

if
 

the
 

load
 

is
 

below
 

the
 

yield
 strength
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material

Yield strength

Tensile strength

Time dependent

 

deformation



Part I Part I ––
 

CreepCreep
 

phenomenaphenomena

Creep tests
To characterize creep deformation and 
rupture behaviour specific creep tests 
are required

Constant load tests at 
constant temperatures

Measurement of 
• creep strain
• time to rupture

Standard: 
EN 10291
ECCC Recommendations
ASTM E139-06

Δ l/lo = ε

Recording:
creep

 

strain,
time to rupture

Furnace

Specimen

Extenso-
meter
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Secondary
creep stage

Tertiary (final)
creep stage

minimum
degressive

progressive

Primary
creep stage
Primary
creep stage

Elastic (instantaneous) deformation

X

X

Fracture

Loading time

Dislocation
 

movement
 

(climb)
Comes

 

from
 

thermally
 

activated
 atom

 

mobility, giving
 

dislocations
 additional slip

 

planes in which
 

to 
move

Constant
 

strain
 

rate –
 

Increasing
 resistance

 

to slip
 

due
 

to the
 buildup

 

of dislocations
 

and other
 microstructural

 

barriers

Increasing
 

strain
 

rate –
 decreasing

 

resistance
 

to slip
 

due
 to changes

 

in microstructure, 
internal

 

cracking
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CreepCreep
 

phenomenaphenomena

Evolution of creep strain
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CreepCreep
 

phenomenaphenomena

Evolution of creep damage

Time dependent
 

process
Starting

 
during

 
regular

 operation
 

time of the
 component

Damage
 

appearance
 

is
 linked

 
to consumed

 
life 

time, loading
 

situation, 
temperature, material Time

C
re

ep
st

ra
in

Damage
Development
≥

 

50 % of life time

Change in microstructure



Creep damage development
1.

 
Creep deformation

2.
 

Cavity nucleation 
3.

 
Cavity formation, orientation to 
maximum principal stress

4.
 

Formation of microcracks
5. Creep crack growth
6. Unstable crack growth – failure
7. Ligament failure
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Characteristics for design 

Part I Part I ––
 

CreepCreep
 

phenomenaphenomena

creep curve
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creep rupture
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Time
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Strength to achieve 1% creep strain at time 
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Rupture Strength at time t and temperature



Interpretation of creep data

Part I Part I ––
 

CreepCreep
 

phenomenaphenomena

Scattering
 

of rupture
 

data
 caused

 
by: 

• differences
 

in 
• chemical

 

composition,
• heat

 

treatment, 
• different manufacturing

 processes
• Influence

 

of testing
 

lab
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Test duration t (h)
Creep rupture strength data

 

of  steel grade X20CrMoV12-1 at 500 °C (10 heats, bars 
and tubes) obtained by the German Creep Committee
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Interpretation of creep data

Part I Part I ––
 

CreepCreep
 

phenomenaphenomena

Scattering
 

of creep
 

strain
 data

Crossover
 

of creep
 

curves
 

at 
service

 

like
 

low
 

stresses

Steel grade X20CrMoV12-1 at 550 °C
Specimens of one melt but different places



Extrapolation to long term behaviour:  Do not exceed factor 3 in time
to determine 2x105h creep strength at least test data up to 70000 h is 
required

102 103 104 105 106

Rupture
 

time h 

St
re

ss
 M

Pa

3 years

200.000 h

Stable
 

microstructure

Thermally
 

activated
 changes

 

(new
 

phases, 
coarsening) in 
microstructure

 

affect
 creep

 

strength

Reliability of long term creep data
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Reduction εII/IIIReduction εII/III

Reduction rupture timeReduction rupture time

εc

time

εc

time

Standard creep test: uniaxial 
tension, ruptureMultiaxial loading 

situation, rupture
Multiaxial loading 
situation, rupture

Decrease rupture 
strain
Decrease rupture 
strain
Decrease rupture 
strain

I/II

II/III

I/III/II

II/IIIII/III

Multiaxiality

Influence on 
creep 
deformation 
and rupture 
behaviour
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Part II Part II ––
 

ComponentComponent
 

BehaviourBehaviour

Small scale lab 
specimen

Large scale 
components

On site 
manufacturing

Transferability
 

of creep
 

test results
 

to components



Part II Part II ––
 

ComponentComponent
 

BehaviourBehaviour

Basic requirements for transferability
• Execution of the creep  tests should be in accordance with an 

international code. 

• Lab should accredited

• Microstructure/heat treatment of the lab specimen is representative for 
the component or several melts have to tested in order to determine 
the average creep behaviour.

• Testing time and rupture time of the lab specimens should be in 
accordance with dominating creep damage mechanism of the 
component.

• Stationary service conditions at the component have to be assumed, 
i.e. creep processes should not be influenced by cyclic loading.



20

Thick walled components under internal pressure:
1 h

200 kh

Even after long 
loading times, 
no 
homogeneous 
stress 
distribution can 
be observed. 
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under internal pressure:
Material E911; ϑ = 600 °C
u = 1,75; s = 60 mm
path length over wall thickness
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Material properties from creep test can be applied if 
analytical methods are used to determine a representative 
stress in the cross section – conservative results
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ComponentComponent
 

BehaviourBehaviour

Specific problems -
 

welds

Combination
 

of 
different materials

 
with

 different creep
 behaviour

Unfavourable heat input 
during welding leads to:

Changes of the micro-
structure (phase 
transformation)
Changes of grain size
Change of 
precipitation
characteristics

Weld metalBM
Base metal 

BM

Heat
affected
zone (HAZ)

100 1k 10k 100k
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300

 coarse grain zone
 base metal
 fine/coarse grain zone
 intercritical zone
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Time to rupture tR  / h
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rupture
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BehaviourBehaviour

Formation of creep
 

cavities
 

in the outer
 area

 
of HAZ (intercritical zone): Type 4 

cracking
HAZ  has to be considered as area with 
increased creep failure probability

Welded

 

nozzle
Steel 14 MoV

 

6 3
t = 148 000 h,
T = 540 °C 

BM HAZ WM

)metalbase(R
int)jowelded(RWSF

/t/m

/t/m

δ

δ=
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ComponentComponent
 

BehaviourBehaviour

Thin walled pipes with long. seams under internal pressure:
• Longitudinal welds are fully loaded in pipes 

under internal pressure 
(σh =σ1 =σmax).

• After stress redistribution almost homogeneous 
stress situation.

• Creep data from crossweld samples represents 
the component behaviour

ha 2
1 σσ =
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ComponentComponent
 

BehaviourBehaviour

Thick walled, welded components 
under internal pressure:
Inhomogeneous microstructure over the 
cross section (e. g. BM, HAZ, WM)

Varying stress situation in the cross section 
containing welds due to different creep 
behaviour.
Influence of the orientation of the cross section 
to the direction of maximum principle stress.

FE-analysis adequate tool to describe the 
local stress-strain situation

Varying constraint
Stress states of different multiaxiality

σ1

σ2
weld



Part III Part III --
 

NumericalNumerical
 

simulationsimulation

Specific
 

problems
 

with
 

creep
 

behaviour:

1.
 

Use
 

of creep
 

data
 

set
 

in the
 

formulation
 

of creep
 

laws

2.
 

Description
 

of effect
 

of multiaxial stress state
 

on creep
 deformation

 
and creep

 
damage

3.
 

Stress-strain
 

relaxation
 

of welded
 

structures
 

–
 

type
 

IV cracking
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NumericalNumerical
 

simulationsimulation

Formulation
 

of creep
 

laws
 

-
 

scheme
 

of a creep
 

routine

FEM-Solver

Abaqus/Ansys

Post-Processing

Pre-Processing

Distribution of creep
 strains

 Stress relaxation

Uniaxial creep

tests

adaptation

CREEP / UMAT

Fortran Routine

Stress-strain
 data

Parameter A1 , n1 , m1 
A2 , n2 , m2Parameter Transfer 

Creep
 

strain

Geometry / material 
data
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Formulation
 

of creep
 

laws
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– All stages
 

of creep
 should

 
be

 
covered, 

e.g. by
 

a Graham-
 Walles formulation

– Reliable
 

data
 

base
 should

 
be

 
used, 

describing
 

the
 

short
 time behaviour

 
as 

well as the
 

long
 

term
 behaviour

– For component
 calculation

 
at least 

creep
 

data
 

covering
 1/3 of component

 
life 

should
 

be
 

available
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Formulation
 

of creep
 

laws
– Scatterband

 
caused

 by
 

different melts
– Individual

 
creep

 strain
 

behaviour
 

of 
each

 
melt

– Different parameters
 in creep

 
law

– Average
 

behaviour
 of steel

 
grade should

 be
 

considered
 

in the
 creep

 
law, if

 
no melt

 specific
 

data
 

is
 available
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Stress-strain
 

relaxation
 

of welded
 

structures
For structural modeling of welds most accurate results can be expected  
using five material zones with different creep behaviour. 

This
 

is
 

most
 

important
 

for
 the type IV failure

 mechanisms
 

since
 

the
 

creep
 behavior

 
of the

 
component

 is
 

influenced
 

by
 

the
 

different 
creep

 
behavior

 
of this

 
zones
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Deformation shown

 
with

 
a scale

 
of 5:1

Stress-strain
 

relaxation
 

of welded
 

structures
Numerical result:
Highest degree 
of multiaxiality in 
the center
of the specimen

Metallographic 
result: 
Highest cavity 
density in the 
centre of the 
specimen
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Deformation shown

 
with

 
a scale

 
of 5:1

Stress-strain
 

relaxation
 

of welded
 

structures
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SummarySummary
 

and and ConclusionsConclusions

The standard
 

tensile
 

test alone
 

cannot
 

predict
 

the behaviour
 

of a 
structural

 
material at elevated

 
temperatures, where

 
time dependent

 plastic
 

deformation
 

occur

Creep
 

deformation
 

and damage
 

is
 

strongly
 

influenced
 

by
 parameters

 
like

 
temperature, stress state, manufacturing

 
process, 

heat
 

treatment

Consequently
 

a large scattering
 

of data
 

could
 

be observed
 

and has 
to be accepted

 
and considered

 
in the numerical

 
modelling

 
of creep

 processes



SummarySummary
 

and and ConclusionsConclusions

With
 

regard
 

to the transferability
 

to components
 

operating
 

in the 
long

 
term

 
range

 
(>100000h) an accurate

 
assessment

 
of the data

 used
 

for the fitting
 

of creep
 

laws
 

has to be done, in particular:
– Data should

 
cover

 
the same

 
microstructural

 
creep

 
deformation

 mechanism
– For extrapolation

 
the factor

 
3 in time should

 
not

 
be exceeded

– If
 

no heat
 

specific
 

data
 

is
 

available, the data
 

for fitting
 

the 
parameters

 
should

 
meet

 
the mean

 
values

 
of the creep

 scatterband
 

of the respective
 

steel
 

grade



SummarySummary
 

and and ConclusionsConclusions

The creep
 

laws
 

used
 

in creep
 

routine/user
 

UMAT in the FE-Code
 should

 
include

 
a creep

 
damage

 
factor, which

 
describes

 
the 

influence
 

of stress state
 

(multiaxial stress state) on creep
 deformation

 
development

 
in secondary

 
and tertiary

 
creep

 
stage

For the numerical
 

modelling
 

of creep
 

loaded
 

structures
 

a multi-
 material modell

 
is

 
essential, describing

 
the time dependent

 behaviour
 

of the different areas
 

in HAZ as well as the base
 

metal 
and weld

 
metal

Thus
 

the stress relaxation
 

due
 

to the combination
 

of different 
materials

 
should

 
be described
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Thank
 

you
 

for your
 

attention
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