
© 2020 FMI Modelica Association Project | www.fmi-standard.org

Status & Updates January 2021

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 2

▪ Overview

▪ Quick Overview of Modelica Association Standards

▪ New in FMI 3.0

▪ FMI Interface Types (Model Exchange, Co-Simulation, Scheduled Execution)

▪ FMI for Co-Simulation

▪ Event Handling

▪ Intermediate Update

▪ Support of Layered Standards

▪ Miscellaneous

▪ eFMI: FMI for embedded systems, current status

Contents

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 3

Overview

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 4

Non-profit Modelica Association:

▪ Provides a family of
coordinated standards for the
modeling and simulation of
cyber-physical systems.

▪ All standards definitions are
available free of charge to
anybody

▪ Development done in open
groups of interested parties

Modelica Standards for Engineering Simulation

• A-causal, object-oriented language & free

libraries for physical systems modeling and

simulation.

• Transient & steady-state simulation and

optimization

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 5

Modelica Language

• First Release, Modelica 1.0: 1999

• Current Release, Modelica 3.4: 2017

• Modelica 3.5 to be released in February 2021

Modelica Standard Library

• Current release: Modelica Standard Library 4.0, released June 2020

Modelica Standards for Engineering Simulation

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 6

▪ Semantic, API and XML format for exchange of simulation models and co-simulation

FMI: Functional Mock-Up Interface

https://fmi-standard.org/

https://fmi-standard.org/

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 7

▪ File format and XML schemas for description of architectures and sets of parameters

SSP: System Structure and Parametrization

https://ssp-standard.org/

https://ssp-standard.org/

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 8

Integration of FMUs for SIL & HIL

▪ The System Structure defined for SIL can
be reused for HIL testing

▪ It becomes possible to reuse more
models, configurations, tests, layouts and
parameters

▪ A Data Management tool controls the
lifecycle of the SSP

Modelica Standards for Engineering Simulation

• Describe system configuration,

structure, parameters for

composite cyber-physical systems

• Components typically FMUs

SIL Integration

SIL Configuration

HIL Integration

HIL Configuration

Data Management

Model Management

Release 1.0: March 2019

Status: update for best

compatibility with FMI 3.0

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 9

▪ Semantic, protocol and XML schema for network-based co-simulation

DCP: Distributed Co-Simulation Protocol

https://dcp-standard.org/

https://dcp-standard.org/

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 10

Modelica Standards for Engineering Simulation

• Real-time communication protocol between

distributed models

• For HiL simulations and communication between

models and real systems

(e.g. engine
testbench)

RT SystemNon-RT PC or Computing Cluster

Transport protocol

Communication System

Wired
Communication

(e.g. CAN)

Wireless
Communication
(e.g. BlueTooth®)

Interprocess
Communication
(e.g. shared mem.)

Distributed co-simulation
protocol

Release 1.0: March 2019

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 11

FMI 2.0

FMI 3.0: Interface Types

Model Exchange Co-Simulation

FMI 3.0

Model Exchange

Clocks

Co-Simulation

Clocks

Intermediate Value Access

Event Handling

Scheduled Execution

Tasks

Scheduler

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 12

NEW FEATURES FOR CO-SIMULATION

New FMI 3.0 Feature Co-Simulation Use Case

Events (raising and handling) Interrupt doStep() to handle events

Intermediate Update of Input

Variables

Better interpolation of inputs to

improve stability and efficiency

Clocked systems Synchronize variable changes

across FMUs

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 13

NEW FEATURES TO SIMPLIFY HANDLING

New FMI 3.0 Feature Use Case

Array Support Simplify usage of multi-dimensional

variables

Terminals and Icons Simplify connection of many

signals between FMUs in importers

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 14

NEW FEATURES FOR CONTROLLER PACKAGING (VECU)

New FMI 3.0 Feature vECU Use Case

integer types and Float32 vECU internals and bus signals
(8, 6, 32 and 64 bit, signed and unsigned

integer, 32 and 64 bit float)

binary type Complex sensor data and bus

signals

clocked variables Bus signals

array support Internal maps

structural parameters Calibrate array sizes at runtime

terminals and icons Group bus signals

clocked partitions

External scheduling of tasksnew interface type:

Scheduled Execution

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 15

NEW FEATURES FOR LAYERED STANDARDS

New FMI 3.0 Feature Layered Standard Use Case

XML element annotations Semantic description of variables

and terminals

/extra folder in zip Ship additional files required

Layered Standards (in preparation) Use Case

XCP When packaging vECUs

(controllers), XCP allows

standardized access (see ASAM)

to ECU internal variables

CAN2Signals Allows grouping and description of

FMU IO as CAN bus signals (and

possibly binary frames)

e

Process

Process

Model

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults

Standardizing eFMI for Embedded Systems with Physics-based
Models in the Production Code Software

eFMI Short Summary

Jan. 29, 2021, Germany

Oliver Lenord, Robert Bosch GmbH – Corporate Research

Martin Otter, DLR

with contributions from all partners of the EMPHYSIS consortium

Objective
Bridge the gap

Modeling & Simulation Embedded Software

SW

Objective
Bridge the gap

Modeling & Simulation Embedded Software

SW

Physical Model

Online physical models key technology

for advanced engine control software:

▪ virtual sensors, i.e., observers,

▪ model-based diagnosis,

▪ inverse physical models as feed forward

part of control structures, and

▪ model predictive control.

Physical models:

▪ Typically described by differential equations, best suited for dynamics

▪ Complementary to data-based modeling, can be combined

▪ Reduced calibration effort due to physical parameters

Motivation
Physics-based models for embedded software

Process

Process

Model

Observer

Sensor Output

Control

Function

Output

Input

Virtual Sensor

Concept
The eFMI workflow

Process

Process

Model

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults

Physics-based

Model

.bin

Controller

Model

Production

Code

ECU

Software

ECU

Application

e

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 21

Architecture
The eFMI representations and enabled tool chains

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Acausal/causal tools
(DAE/ODE)

Model
(Modelica, syq,

Simulink, ...)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

Transform

• inputs + outputs
• integrator
• interfaces of services functions

• generic or specific target configuration
(access of variables, services functions, ...)

• extract prod. C-code
• link service functions
• compile + integrate

Model

• Physics-based model (e.g. vehicle model)
• Controller, estimator, ...
• Diagnosis system, neural network, ...
• Any combination from above

Abbreviations
DAE: Differential Algebraic Equation system

ODE: Ordinary Differential Equation system in state space form

DES: Difference Equation system in State space form
eFMI: Functional Mockup Interface for Embedded systems

eFMU: Functional Mockup Unit for Embedded systems

ECU: Electronic Control Unit

ECU
Realtime-PC
Rapid Prototyping Systems
AUTOSAR

AUTOSAR Adaptive

...

Simulations of
Model

Production Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapper

Behavioral Model
eFMU

Reference results: (𝑡𝑖 , 𝒖𝑖 , 𝒚𝑖)

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 22

Application
eFMI Tool Chain applied to Speed Controller example

Modelica

eFMU Manifest

eFMU

Bosch ECU

manual

integration

Astrée

Dymola

SimulationX
eFMU Manifest

AlgCode Manifest

AlgCode

BehMdl Manifest

BehModel

eFMU Performance

Benchmark

SCODE-CONGRA

ESP

ProdCode Manifest

ProdCode

ProdCode FMU

AlgCode Manifest

AlgCode

BehMdl Manifest

BehModel

eFMI Standardization

▪ eFMI specification 1.0.0alpha.3

▪ to be published before Feb. 10, 2021

https://emphysis.github.io/

▪ Modelica Association Project for eFMI

▪ Application will be submitted to the MA before Feb. 10,2021

▪ First official release, maintenance and further development.

Standardization and Future Work
Schedule

https://emphysis.github.io/

© 2020 FMI Modelica Association Project | www.fmi-standard.org

Appendix & Extras

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 25

FMI 1.0, FMI 2.0 FMI 3.0 Remarks

fmiReal fmi3Float32 Discrete and continuous variables

fmi3Float64 States, derivatives, event-indicators

fmiInteger fmi3Int8, fmi3UInt8

Discrete variables
fmi3Int16, fmi3UInt16

fmi3Int32, fmi3UInt32

fmi3Int64, fmi3UInt64

fmiBoolean fmi3Boolean char

fmiString fmi3String const char* ('\0' terminated, UTF-8 encoded)

fmi3Binary const char* (out-of-band length terminated)

For large sets of data (sensor outputs, bitmaps, …)
Content is specified via mimeType in modelDescription.xml

fmi3Clock Transport information about events

FMI 3.0: New Data Types

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 26

Terminals

▪ Group inputs and outputs to Terminals, which represent buses or physical connectors

▪ Predefined matching rules (plug, bus, sequence) for the whole Terminal, other rules are possible

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 27

Terminals

▪ TerminalMemberVariables reference to variables (inputs, outputs, parameters) of the

ModelVariables List

▪ Predefined semantic for TerminalMemberVariables (signal, inFlow, outflow, stream).

Other semantics are possible.

▪ FMI Terminals are not acausal! The causality (input, output) is defined by the referenced variable!

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 28

▪ Clocks synchronize FMUs with the importer and with other FMUs:

▪ Clocks carry the information that a specific event happens

▪ Clocked variables belong to one clock (a so-called clocked model partition). They change only if this

clock is active.

▪ Clocks allow precise handling of time events (independent from continuous time: fmi3SetTime(), or

arguments of fmi3DoStep())

▪ In Scheduled Execution Communication Clocks are used:

▪ by the importer to identify the specific partition which is to be executed

▪ by the FMU to announce, which model partition wants to be scheduled

Clocks

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 29

▪ The layered standard concept allows the specification of standards on top of FMI

▪ XML element annotations and strings allow additional semantic for variables and terminals

▪ Extra folder in FMU zip-file allows shipping of additional files at a well-defined place without disturbing

compatibility

▪ Examples:

▪ XCP: When packaging virtual electronic control units (vECUs), XCP allows standardized access (see

ASAM) to ECU internal variables (in preparation on FMI GitHub)

▪ CAN2Signals: Allows grouping and description of FMU inputs and outputs as CAN bus signals (in

preparation on FMI GitHub)

▪ Including of 3D-Visualization to FMUs which represent multi body simulation models (prototype from

ESI ITI and TU Dresden)

Concept of Layered Standard

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 30

▪ Graphical representations for the whole FMU and for Terminals can be defined

▪ Alias variable names are now specified by a list of alias names for each variable and no longer by a
separate variable with the same valueReference.

▪ Dependencies might change at runtime due to variable structure of the model or due to changes of array

sizes. Dependencies for (array) variables can now be retrieved at runtime.

▪ Asynchronous execution of fmi2DoStep was removed for simplification. This feature was never used

and can be implemented by the importer.

▪ Improvement and clarification of source code FMUs for better platform independency.

Miscellaneous

© 2021 Modelica Association & Modelica Association Projects | www.modelica.org 31

EMPHYSIS Consortium
Acknowledgements
Germany

▪ Bosch1,3

▪ DLR2

▪ ETAS

▪ ESI ITI

▪ AbsInt

▪ PikeTec

▪ dSPACE

▪ EFS

Sweden

▪ Dassault Systèmes AB3

▪ Volvo Cars

▪ Modelon

▪ Linköping University

▪ SICS East

* w/o funding

1) Project Lead

2) Technical Coordination

3) National Coordination

▪ OEM Advisory Board

▪ BMW

▪ Daimler

▪ Mazda

▪ Volvo

▪ France

▪ Siemens SAS3

▪ Dassault Systèmes SE

▪ Renault

▪ CEA

▪ University of Grenoble

▪ FH Electronics

▪ OSE

▪ Soben

▪ Belgium

▪ Siemens NV3

▪ Dana

▪ University of Antwerp

▪ Canada*

▪ Maplesoft3

