An opportunity to ensure that your organisation gets maximum benefit from using FEA
3-Day Training Course - 28th to 30th September : Introduction to FEA Analysis
FEA has become widely used and universally accepted in many industry sectors. FEA is a powerful technique, able to produce solutions to challenging structural analysis problems. The technology and computational efficiency of the method, together with the rapid increases in computer processing power means that today the scope and size of simulations far exceeds the capabilities of even a few years ago.
However, for those engineers embarking on FEA, or companies adopting the technique to improve designs or achieve certification of new products, there is a steep learning curve to overcome. Ease of use is generally assured by the software used but there are still many pitfalls and decisions that need to be made in order to obtain a good and accurate answer.
There are a bewildering array of element types, solution types, meshing methods and pre-post processing options that have to be faced. This is before engineers get down to the engineering physics behind the problem, with the associated classic traps and errors. What is needed is guidance via a thorough but practical assessment of the method and how to use it in the real world.
NAFEMS, the only vendor neutral, not-for-profit organization with the aim of promoting the effective and reliable use of FEA, addresses this requirement by providing this two-day example-driven, practical course.
Attendees are shown the background to the FEA methodology, via simple real examples with a minimum of theory. The strength and weaknesses of various FEA techniques are shown and discussed and practical considerations of loadings, boundary conditions and structural details are shown via examples.
The assessment, validation and interpretation of FEA results are vital for delivering safe and effective products. These aspects are discussed so that attendees gain confidence in providing conservative, reliable and qualified results. Attendees build this process themselves during a final class activity and come away with an embryo Procedural Check List that should be useful in their own work place. Another class workshop addresses report writing.
The course offers excellent guidance on how to assess and plan the task of carrying out a Finite Element Analysis. A clear understanding of the objectives of each analysis is vital and a road map for achieving this is presented. A review of the trade-off between available resource and analysis methodology is given.
This public course offers important advantages:
This course is aimed at:
The material that is presented is independent of any particular software package, making it ideally suited to current and potential users of all commercial finite element software systems. This course is a must for all engineers aiming to use FEA as a reliable predictive tool for thermal, stiffness and stress analysis.
Companies moving into FEA technology to improve product designs or assess prototype failures or speed the design process will benefit from sending key engineers to this course. If you have sufficient engineers then a tailor made course maybe more suitable and NAFEMS can then work closely with you to cater for your specific industry sector or analysis type.
The course is open to both members and non-members of NAFEMS.
“Exceeded my initial expectations. I learnt a lot more than I thought I would and it was genuinely interesting.”
“The practical advice given by the lecturer about FEA was very useful”
"Confident to return to work and actually know what I’m talking about!"
"Thank you all for providing this opportunity, I can’t wait to get more experience in the beautiful world of numerical analysis. Special thanks to Gino. You’ve got a crystal clear explanation on your slides."
Registration will be held on Tuesday morning between 9:00am and 09:30am, with the course starting immediately afterwards. The next mornings, the course will start at 9:00am, finishing by 5:00pm approximately.
This course program contains 5 parts that combine lectures, discussions, workshops and exercises. These will not be provided in the order presented.
ID | Competence Statement |
FEAkn1 | List the various steps in the analysis/simulation process. |
FEAkn2 | Define the meaning of degree of freedom. |
FEAkn3 | List the nodal degrees of freedom and the associated force actions for common beam, 2D solid, 2D axisymmetric, 3D solid and shell elements, for the Displacement FEM. |
FEAkn8 | List the requirements for an axisymmetric analysis to be valid. |
FEAkn9 | List the degrees of freedom to be constrained on a symmetric boundary. |
FEAkn11 | Sketch problems showing the various form of symmetry. |
FEAkn12 | List the advantages of using symmetry. |
FEAkn14 | List the possible advantages of applying material properties, loads and boundary conditions to underlying geometry rather than to finite element entities. |
FEAkn15 | List 2 common solvers for large sets of simultaneous equations. |
FENkn16 | List the various forms of element distortion. |
FEAkn17 | List the various element types commonly used in the analysis of components within your organisation. |
FEAco1 | Describe the sources of error inherent in finite element analysis, in general terms. |
FEAco2 | Discuss checks that may be used post-solution to check for the presence of inaccuracy. |
FEAco4 | Explain the meaning of convergence, including h and p types. |
FEAco5 | Discuss the difficulties that can arise in using a CAD model as the basis for carrying out analysis and simulation. |
FEAco6 | Discuss the need for a consistent set of units in any analysis and illustrate possible pitfalls. |
FEAco7 | Explain why strains and stresses are generally less accurate than displacements for any given mesh of elements, using the Displacement FEM. |
FEAco11 | Discuss the finite element / spring analogy. |
FEAco12 | Outline a common method employed to solve the large sets of sparse symmetric common in FEA. |
FEAco13 | Explain how the structural stiffness matrix is assembled from the individual element matrices. |
FEAco14 | Discuss the nature of the structural stiffness matrix. |
FEAco18 | Explain the term Isoparametric Element. |
FEAco24 | Discuss the relationship between shape function and strain/stress prediction for simple 2D linear and parabolic elements. |
FEAco26 | Discuss the significance of computer memory to solution elapse time for large models. |
FEAco27 | Explain how unwanted cracks can be produced in 2D and 3D solid meshes and describe which plot type is useful in detecting these. |
FEAco28 | Explain why element distortion generally results in poorer results. |
FEAco29 | Discuss the term Flying Structure or Insufficiently Constrained Structure. |
FEAco30 | Explain why stress averaging is not appropriate at junctions between elements of different thickness. |
FEAco31 | Explain why most finite elements do not represent a circular boundary exactly and highlight how this approximation manifests itself. |
FEAco35 | Discuss the terms Validation and Verification and highlight their importance. |
FEAco40 | Explain the rationale behind the use of 1-D, 2-D and 3-D elements used in the analysis of components within your organisation. |
FEAap1 | Employ an analysis system for the determination of stresses and strains in small displacement, linear elastic problems. |
FEAap2 | Demonstrate effective use of available results presentation facilities. |
FEAap3 | Illustrate the approximate nature of finite element analysis, through examples chosen from your industry sector. |
FEAap4 | Illustrate the various steps in the Displacement Finite Element Method from assumed displacement polynomial to determination of stresses. |
FEAap5 | Illustrate possible applications of 0D, 1D, 2D and 3D elements in your industry sector. |
FEAap7 | Employ symmetric boundary conditions effectively. |
FEAap10 | Illustrate various physical situations which will result in a Stress Singularity and explain why it is not appropriate to use finite element results at such locations directly. |
FEAap12 | Employ a range of post-solution checks to determine the integrity of FEA results. |
FEAan1 | Analyse the results from small displacement, linear static analyses and determine whether they satisfy inherent assumption |
FEAan2 | Compare the results from small displacement, linear elastic analyses with allowable values and comment on findings. |
FEAev2 | Assess the significance of neglecting any feature or detail in any idealisation. |
Event Type: Training Course
Member Price: £840 Fully Booked
Non-Member Price: £1300 Fully Booked
Start Date
28/09/21
End Date
30/09/21
Location
Cheshire
Interested in public face to face intro to FEA training ..... please contact Jo Davenport for future dates - jo.davenport@nafems.org
01355 225688
Cottons Hotel & Spa
Manchester Rd
Knutsford
WA16 0SU
UK tel.+44 (0)1565 650333
Email: reception@cottonshotel.co.uk
https://www.cottonshotel.co.uk/
Sat Nav: WA16 0SU
Nearest airport: Manchester International – 10 miles
Nearest train station: Knutsford – 1.8 miles
Overnight Accommodation
We have secured a limited number of bedrooms at a special rate, for NAFEMS delegates. Bed and breakfast at the venue hotel is £115. To make your reservation, please contact the hotel directly mentioning that you are attending the NAFEMS training course.
Stay up to date with our technology updates, events, special offers, news, publications and training
If you want to find out more about NAFEMS and how membership can benefit your organisation, please click below.
Joining NAFEMS© NAFEMS Ltd 2025
Developed By Duo Web Design