This Website is not fully compatible with Internet Explorer.
For a more complete and secure browsing experience please consider using Microsoft Edge, Firefox, or Chrome

Lattice-Boltzmann Methods - Basics and Recent Progress

NAFEMS International Journal of CFD Case Studies

Volume 5, January 2006

ISSN 1462-236X


Lattice-Boltzmann Methods - Basics and Recent Progress

Manfred Krafczyk and Jonas Tölke
Inst. für Computeranwendungen im Bauingenieurwesen, TU Braunschweig, Pockelsstr. 3, D-38106 Braunschweig

https://doi.org/10.59972/avnayxcs

Keywords: Lattice-Boltzmann, Simulation, Kinetic Theory, CFD, Free Surface, Multiphase and Turbulence

 


Abstract

This article gives a short overview over the formal origin and the evolution of Lattice Boltzmann (LB) methods for Computational Fluid Dynamics. The main focus is to discuss the basic framework of LB models and different model variants including boundary conditions as well as some potential fields of application. In addition we present some results of qualitative and quantitative numerical studies of different problem fields spanning laminar, turbulent, free surface and multiphase flows.

References

[1] Chapman S., Cowling, T. G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, (1990)

[2] Grad, H.: On the Kinetic Theory of Rarified Gases, Communications on Pure and Applied Mathematics, (1949) pp. 331-407

[3] Quian Y. H., d’Humières D., Lallemand, P.: Lattice BGK models for Navier Stokes equations, Europhysics Letters, 17(6), (1992), pp. 479-484

[4] Succi, S., The Lattice Boltzmann equation, Oxford Science Publications, ISBN 0 19 850398 9, (2001)

[5] Wolf-Gladrow, D. A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer Verlag, Berlin, 2000.

[6] Tölke, J., Krafczyk, M., Schulz, M., Rank E., Berrios R.: Implicit discretization and non-uniform mesh refinement approaches for FD discretizations of LBGK Models, Int. J. Mod. Phys. C, 9(8), (1998), pp. 1143-1157

[7] Tölke, J., Krafczyk, M., Schulz, M., Rank, E.: Discretization of the Boltzmann equation in velocity space using a Galerkin approach, Computer Physics Communications, 129, (2000), pp. 91-99

[8] Tölke, J., Krafczyk, M., Rank, E.: A Multigrid Solver for the discrete Boltzmann equation, J. Stat. Phys., Vol. 107, Nos.1/2, (2002), pp. 573-591

[9] Filippova, O., Hänel, D.: Grid refinement for Lattice-BGK models, J. Comp. Phys., 147, 1988, pp. 219-228

[10] Mei, R., Shyy, W., Yu, D., Luo, L.-S.: Lattice Boltzmann method for 3-D flows with curved boundary, J. Comp. Phys. 161, (2000), pp. 680-699

[11] Mei, R., Shyy, W.: On the Finite Difference Based Lattice-Boltzmann model in Curvilinear Coordinates, J. Comp. Phys., 143(2), (1998), pp. 426-448

[12] Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a lattice-Boltzmann fluid with boundaries, Phys. Fluids 13 (2002), pp. 3452–3459

[13] D. d´Humières, I. Ginzburg: Multi-reflection boundary conditions for lattice Boltzmann models ITWM report (38) 2002 (http://www.itwm.fhg.de/zentral/download/berichte/bericht38.pdf)

[14] d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.: Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. R. Soc. Lond. A, 360, (2002), pp. 437-451

[15] Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E, 61(6) , (2000)

[16] Yu, D., Mei, R., Luo, L.-S., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences 39(5), (2003), pp. 329-367

[17] Crouse, B. Rank, E., Krafczyk, M., Tölke, J.: A LB-based approach for adaptive flow simulations, Int. J. of Mod. Phys. B, 17, 1+2, (2003), pp. 109-112

[18] Crouse, B., PhD thesis, Lehrstuhl Bauinformatik, TU München, (2003)

[19] Shan, X., Chen, H.: Lattice Boltzmann model for simulating ows with multiple phases and components, Phys. Rev. E, 47, (1993), pp.1815-1819

[20] Swift, M.R., Osborn, W.R., Yeomans, J.M., Phys.Rev.Lett. 75, (1995), p. 830

[21] He, X., Shan, X., Doolen, G. D.: Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E, 57(1), (1998)

[22] Gunstensen, A. K., Rothman, D.: Lattice Boltzmann model of immiscible Fluids. Phys. Rev. A, 43(8), (1991), pp. 4320-4327

[23] Rothman, D. H., Keller, J. M., Immiscible Cellular Automaton Fluids. J. Stat. Phys., 52, (1988), pp. 1119-1127

[24] Kehrwald D., Numerical Analysis of Immiscible Lattice BGK, PhD thesis, Univ. Kaiserslautern, (2002)

[25] Tölke, J., Gitter-Boltzmann Verfahren zur Simulation von Zweiphasenströmungen, PhD thesis Lehrstuhl Bauinformatik, TU München 2001 (http://www.cab.bau.tubs.de/institut/mitarbeiter/grund/toelke/disseration_jonas_toelke.pdf)

[26] Tölke, J., Freudiger, S.,, Krafczyk, M., A multiphase Lattice-Boltzmann model on non-uniform grids, accepted for publication in Computers & Fluids

[27] Ginzburg, I., Steiner K., A free surface lattice-Boltzmann method for modelling the filling of expanding cavities in Bingham fluids, Phil. Trans. R. Soc. Lond. A, 360, (2002), pp. 453-466

[28] Thürey, N., A single-phase free-surface Lattice Boltzmann Method, Diploma thesis, LS System Simulation, Univ. Erlangen-Nuremberg, (2002)

[29] Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A Lattice Boltzmann Subgrid model for high Reynolds number flows, Fields Inst. Comm., 6, (1996), pp. 151-166

[30] Eggels, J.G.M.: Direct and Large-Eddy Simulations of Turbulent Fluid Flow Using the Lattice-Boltzmann Scheme, Int. J. Heat Fluid Flow, Vol. 17, (1996), pp. 307 ff.

[31] Teixeira M.: Incorporating Turbulence Models into the Lattice-Boltzmann method, Int. J. Mod. Phys. C, 9, No.8, (1998), p.1159-1175

[32] Pervaiz, M., Teixeira, M.: Two Equation Turbulence Modelling with the Lattice Boltzmann method, Proc. of 2nd International Symposium on Computational Technologies for Fluid_Thermal_Chemical Systems with Industrial Applications, ASME PVP Division Conference, Boston, (1999)

[33] Krafczyk, M.: Gitter-Boltzmann Methoden: Von der Theorie zur Anwendung, Professorial thesis, Lehrstuhl Bauinformatik, TU München, (2001), (http://www.cab.bau.tubs.de/institut/mitarbeiter/grund/krafczyk/habil_krafczyk.pdf)

[34] Krafczyk, M., Tölke, J., Luo, L.-S.: Large-eddy simulations with a multiple-relaxation-time LBE model, Int. J. Mod. Phys. B 17(1/2), (2003), pp. 33-39

[35] Karlin, I.V., Ansumali, S., Angelis, E. De, Öttinger, H.C., Succi, S.: Entropic Lattice Boltzmann Method for Large Scale Turbulence Simulation, preprint

[36] www.exa.com

[37] Schäfer, M. Turek, S., Benchmark computations of laminar flow around cylinder, Proc. DFG Priority Research Program “Flow Simulations on High Performance Computers”, Vieweg, (1996)

Cite this paper

Manfred Krafczyk, Jonas Tölke, Lattice-Boltzmann Methods - Basics and Recent Progress, NAFEMS International Journal of CFD Case Studies, Volume 5, 2006, Pages 19-29, https://doi.org/10.59972/avnayxcs

Document Details

ReferenceCFDJ5-2
AuthorsKrafczyk. M Tölke. J
LanguageEnglish
TypeJournal Article
Date 2nd January 2006
OrganisationTU Braunschweig

Download

Purchase Download

Order RefCFDJ5-2 Download
Non-member Price £5.00 | $6.13 | €5.92

Back to Previous Page