(This has been a keynote presentation at the NAFEMS World Congress 2023.)
To gain a strategic advantage in the field of Defence and Security, Dstl develops advanced modelling and simulation techniques to predict the effects of blast, ballistic, and directed energy threats on a range of military platforms and metropolitan environments. This unclassified presentation describes the key considerations and applied modelling techniques adopted when simulating these scenarios. Particular focus is placed on key aspects such as model parametrisation and validation as well as the use of Machine Learning and stochastic techniques as part of the generation of Synthetic Environments capable of probabilistic, physics-based simulation.
Daniel Pope is a Technical Fellow within the Defence Science and Technology Laboratory (Dstl), a government-based agency undertaking Science & Technology research on behalf of the UK Ministry of Defence (MoD) and other government parties. He is currently responsible for Modelling and Simulation Strategy within the Platform Systems Division in Dstl. This covers techniques across a comprehensive taxonomy from Physics Simulation via Systems Modelling and Mission Effectiveness to Campaign Analysis.
Daniel has almost 30 years of experience in the Physics Modelling of Terminal Effects, focussing mainly on the interaction of blast and ballistic threats with military and civilian platforms. He leads a capability responsible for undertaking research in the following areas:
He is Visiting Professor at both Imperial College London and the University of Sheffield and a Fellow of the Institution of Civil Engineers in the UK.
Reference | NWC23-K01 |
---|---|
Author | Pope. D |
Language | English |
Type | Presentation Recording |
Date | 18th May 2023 |
Organisation | DSTL |
Region | Global |
Stay up to date with our technology updates, events, special offers, news, publications and training
If you want to find out more about NAFEMS and how membership can benefit your organisation, please click below.
Joining NAFEMS© NAFEMS Ltd 2024
Developed By Duo Web Design