Most structures involve some form of jointing or connection. Traditional fabricated structures have used many thousands of bolts and rivets to connect components together in a continuous manner, in the case of ships and aircraft the total can run into millions.
Even today many structures rely on this type of technology – for example, the use of spot welds in a modern road vehicle. Significant discrete load paths are formed by lugs and pins, clips or similar connectors in many structures across a wide range of industries. Alternative forms of connection are welds joints and bonded joints. These may well exist as the sole means of load transfer or be supplemented by mechanical connections such as bolts or rivets.
The engineer is faced with an often difficult decision when attempting to simulate such connections and joints within a Finite Element Analysis (FEA). In many cases, the details of each individual connection can be ignored if an overall stiffness or strength assessment is to be made and the connection is assumed reasonably continuous. However, there may be doubts about the local flexibility and load paths developed with this assumption. It may be that the assessment of the local behavior of the connector is essential to the safety case. This would certainly be the case with main attachment fittings for example. In some cases, the interaction between the connectors and the surrounding structure is critical, as in the case of pre-loaded bolts and inter-rivet buckling.
Modeling of weld features to get a reasonable estimate of stress concentrations at the weld toe can be problematic; do we model with a fine detailed 3D model, or use a ‘hot spot’ type of approach?
The objective of this course is to review the various connection and joint technologies in use, give an overview of the physics involved and show how to successfully implement practical solutions using Finite Element Analysis.
Each topic in the class is treated as a building block and is presented using an overview of the physics and theory involved. The math is kept simple and the emphasis is on practical examples from real life to illustrate the topic. The mapping to Finite Element analysis techniques is shown with numerous workshops. The tutor will be showing analysis results interactively and involving the students in the process via Q and A periods during each session, follow up emails and a Course Bulletin Board
Students will join the audio portion of the meetings by utilizing the VoIP (i.e. headset connected to the computer via headphone and microphone jacks) or by calling into a standard toll line. If you are interested in additional pricing to call-in using a toll-free line, please send an email to: e-learning @ nafems.org
Overview
Finite Element Modeling Methods
Overview
FE Modeling Methods
Overview
FE Modeling Methods
Overview
FE Modeling Methods
ID | Competence Statement |
BMPSev2 | Select suitable idealisations for welded, bonded, riveted and bolted joints in fabricated plate/shell structures. |
Event Type | eLearning |
---|---|
Member Price | £283.29 | $347.00 | €335.04 |
Non-member Price | £436.77 | $535.00 | €516.56 |
Tutor: | Tony Abbey |
Start Date | End Date | Location | |
---|---|---|---|
Session Times | | Online | |
Session Times | | Online | |
Not Available to Attend this Time?
Would you like us to notify you when the next course is open for enrollment? If so, add yourself to the eLearning Waitlist
*It is your individual responsibility to check whether these e-learning courses satisfy the criteria set-out by your state engineering board. NAFEMS does not guarantee that your individual board will accept these courses for PDH credit, but we believe that the courses comply with regulations in most US states (except Florida, North Carolina, Louisiana, and New York, where providors are required to be pre-approved)
Telephony surcharges may apply for attendees who are located outside of North America, South America and Europe. These surcharges are related to individuals who join the audio portion of the web-meeting by calling in to the provided toll/toll-free teleconferencing lines. We have made a VoIP option available so anyone attending the class can join using a headset (headphones) connected to the computer. There is no associated surcharge to utilize the VoIP option, and is actually encouraged to ensure NAFEMS is able to keep the e-Learning course fees as low as possible. Please send an email to the e-Learning coordinator (e-learning @ nafems.org ) to determine if these surcharges may apply to your specific case.
Just as with a live face-to-face training course, each registration only covers one person. If you plan to register a large group (10+), please send an email to e-learning @ nafems.org in advance for group discounts.
For NAFEMS cancellation and transfer policy, click here.
Stay up to date with our technology updates, events, special offers, news, publications and training
If you want to find out more about NAFEMS and how membership can benefit your organisation, please click below.
Joining NAFEMS© NAFEMS Ltd 2025
Developed By Duo Web Design